1. Introduction .. 2
2. Function ... 2
3. Related parameters..3
4. Light-load high-speed operation ..4
 4.1 Mode description..4
 4.1.1. Automatic setting mode of high-speed operation speed (F32B =1, 2)............... 5
 4.1.2. Fixed setting mode of high-speed operation speed (F32B =3, 4)............... 7
5. How to adjust parameters ..9
 5.1 Automatic setting mode of high-speed operation speed... 9
 5.2 Fixed setting mode of high-speed operation speed... 10
1. Introduction

Thank you for your purchase of the Toshiba inverter “TOSVERT VF-AS1”. This instruction manual explains the light-load high-speed operation of VF-AS1.

2. Function

The light-load high-speed operation is used to increase the operating efficiency of the machine by increasing the rotational speed of the motor when it is operated under light load. This function is useful for constant-torque load applications which repeatedly drive light and heavy loads, such as lifts and transfer equipment. Since VF-AS1 has the learning function for the light-load high-speed operation, it can be easily adjusted by executing the forward run (raising) or reverse run (falling) operation. (F 3 2 B =3, 4 only)
3. Related parameters

Related parameters for light-load high-speed operation

<table>
<thead>
<tr>
<th>Title</th>
<th>Communication No.</th>
<th>Function</th>
<th>Adjustment range</th>
<th>Minimum setting unit (Panel/Communication)</th>
<th>Default setting</th>
<th>Write during running</th>
<th>Vector control</th>
<th>Torque control</th>
<th>PM control</th>
<th>Vf control</th>
<th>Adjustment Note</th>
</tr>
</thead>
</table>
| F328 | 0328 | Light-load high-speed operation selection | 0: De-select
1: High-speed operation speed set automatically (Power running at F command : Raising)
2: High-speed operation speed set automatically (Power running at R command : Raising)
3: High-speed operation speed set with F330 (Power running at F command : Raising)
4: High-speed operation speed set with F330 (Power running at R command : Raising) | 1/1 | 0 | Disabled | - | - | - | - |
| F329 | 0329 | Light-load high-speed learning function | 0: No learning
1: Forward run learning
2: Reverse run learning | 1/1 | 0 | Disabled | - | - | - | - |
| F330 | 0330 | Automatic light-load high-speed operation frequency | 30.0 to U Hz | 0.1/0.01 | 60.0 | Disabled | - | - | - | - |
| F331 | 0331 | Light-load high-speed operation switching lower limit frequency | 30.0 to U Hz | 0.1/0.01 | 40.0 | Enabled | - | - | - | - |
| F332 | 0332 | Light-load high-speed operation load waiting time | 0.0 to 10.0 sec. | 0.1/0.1 | 0.5 | Enabled | - | - | - | - |
| F333 | 0333 | Light-load high-speed operation load detection time | 0.0 to 10.0 sec. | 0.1/0.1 | 1.0 | Enabled | - | - | - | - |
| F334 | 0334 | Light-load high-speed operation heavy load detection time | 0.0 to 10.0 sec. | 0.1/0.1 | 0.5 | Enabled | - | - | - | - |
| F335 | 0335 | Switching load torque during power running | -250 to 250% | 1/0.01 | 50 | Enabled | - | - | - | - |
| F336 | 0336 | Heavy-load torque during power running | -250 to 250% | 1/0.01 | 100 | Enabled | - | - | - | - |
| F337 | 0337 | Heavy-load torque during constant power running | -250 to 250% | 1/0.01 | 50 | Enabled | - | - | - | - |
| F338 | 0338 | Switching load torque during regenerative braking | -250 to 250% | 1/0.01 | 50 | Enabled | - | - | - | - |

Sensorless vector/vector with sensor (● Effective, - Ineffective)

Note: Parameters F335 to F338 need adjustment according to the load.
Since VF-AS1 has the learning function for the light-load high-speed operation, it can be easily adjusted by executing the forward/reverse run operation (raising/falling for lift application). (F328 = 1, 2 only)
4. Light-load high-speed operation

4.1 Mode description

The light-load high-speed operation includes the modes below:
Each mode can be set by the light-load high-speed operation selection (F 328).

<table>
<thead>
<tr>
<th>Title/function</th>
<th>Default setting</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Deselect</td>
<td>Light-load high-speed operation disabled.</td>
<td></td>
</tr>
<tr>
<td>1: High-speed operation speed set automatically (Power running at F command: Raising)</td>
<td>When inverter judges to be light-load, the high-speed operation frequency is automatically set according to a detected torque.</td>
<td></td>
</tr>
<tr>
<td>2: High-speed operation speed set automatically (Power running at R command: Raising)</td>
<td>When inverter judges to be light-load, the operation is set to the automatic light-load high-speed operation frequency (F 330).</td>
<td></td>
</tr>
<tr>
<td>3: High-speed operation speed set with F 330 (Power running at F command: Raising)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: High-speed operation speed set with F 330 (Power running at R command: Raising)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ex.: If automatic setting mode of high-speed operation speed is used,
set F 328 to 1 for F (forward command): Raising
set F 328 to 2 for R (reverse command): Raising
4.1.1. Automatic setting mode of high-speed operation speed ($F328=1, 2$)

The diagram on the next page (Fig.1) is the timing chart when the automatic setting mode of high-speed operation speed ($F328=1$) is applied to lift application.

At the operation frequency above the light-load high-speed operation switching lower limit frequency ($F331$) (point A in the Fig.1), if a detected torque (*1) after completion of speed reach is below the switching load torque during power running ($F335$ setting value), the inverter judges to be light-load. For light-load operation, the frequency decided with the formula is determined as a target frequency (high-speed operation frequency) and the operation is accelerated toward the target frequency. (Point B in the Fig.1 Light-load high-speed operation)

\[
\text{Target frequency} = \frac{(\text{Value set with } F335) \times (\text{Base frequency (vL})}{(\text{Detection torque})}\]

when target frequency $\leq U_L (\leq F_H)$

*1: Average torque during light-load high-speed operation load detection time ($F333$) after light-load high-speed operation load detection waiting time ($F332$) (5% or more)

Light-load detection is carried out after speed reach when an operation frequency is above the light-load high-speed operation switching lower limit frequency ($F331$).

When each of conditions below is reached, the light-load high-speed operation is canceled and the operation is returned to the frequency corresponding to a speed command value.

1. If a heavy-load torque ($F336$) is exceeded during acceleration up to the high-speed operation frequency.
2. If a heavy-load torque during constant power running ($F337$) is exceeded after reaching the automatic light-load high-speed operation frequency ($F330$) and after a lapse of the light-load high-speed operation heavy load detection time ($F334$).
3. If a speed command value less than the light-load high-speed operation switching lower limit frequency ($F331$) is entered.

Note: The torque monitor at the light-load high-speed switching (detected value) is updated for every operation.

These values can be monitored by setting the standard monitor parameter ($F710$) and status monitor parameters 1 to 8 ($F711$ to $F718$).

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Monitor output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-load high-speed torque monitor 1 (Detection torque monitor at operation switching)</td>
<td>Average torque during light-load high-speed operation load detection time ($F333$) after a lapse of light-load high-speed operation load detection waiting time ($F332$)</td>
<td>Setting No. 64</td>
</tr>
<tr>
<td>Light-load high-speed torque monitor 2 (Detection torque monitor at constant speed operation)</td>
<td>Average torque after reaching automatic light-load high-speed operation frequency ($F330$) and after a lapse of light-load high-speed operation heavy load detection time ($F334$)</td>
<td>Setting No. 65</td>
</tr>
</tbody>
</table>
Example of operation
Light-load high-speed operation selection

\(F328 = 1: \) High-speed operation speed set automatically: F (Raising)

- Light-load high-speed operation
- Heavy-load torque during power running
- Switching load torque during power running

Light-load high-speed operation load detection time \(F333 \)
Light-load high-speed operation load detection waiting time \(F332 \)
Light-load high-speed operation lower limit frequency \(F331 \)

Operation signal (F)
Speed reach signal
Torque (%)
Heavy-load torque during power running \(F336 \)
Heavy-load torque during constant power running \(F337 \)
Switching load torque during power running \(F335 \)

Light-load high-speed operation load detection waiting time \(F332 \)
Light-load high-speed operation heavy load detection time \(F334 \)

Operation frequency (Hz)
High-speed operation frequency varies with load torque.

Note:
The torque monitor at the light-load high-speed switching (detected value) is updated for every operation.

These values can be monitored by setting the standard monitor parameter \(F710 \) and status monitor parameters 1 to 8 \((F711 \text{ to } F718) \).
4.1.2. Fixed setting mode of high-speed operation speed
\((F 328 = 3, 4)\)

The diagram on the next page (Fig.2) is the timing chart when fixed setting mode of the high-speed operation speed \((F 328 = 3)\) is applied to lift application.

At the operation frequency above the light-load high-speed operation switching lower limit frequency \((F 331)\) (point A in the Fig.2), if an average torque during the light-load high-speed operation load detection time \((F 333)\) after completion of speed reach and after the light-load high-speed operation load detection waiting time \((F 332)\) has elapsed is below the switching load torque during power running \((F 335)\), the inverter judges to be light-load detection and is more accelerated up to an automatic light-load high-speed operation frequency \((F 330)\). (Point B in the Fig.2 Light-load high-speed operation)

Load torque detection is carried out after speed reach when an operation frequency is above the light-load high-speed operation switching lower limit frequency \((F 331)\).

When each of conditions below is reached, the light-load high-speed operation is canceled and the operation is returned to the frequency corresponding to a speed command value.

- ① If a heavy-load torque \((F 336)\) is exceeded during acceleration up to the automatic light-load high-speed operation frequency \((F 330)\).
- ② If a heavy-load torque during constant power running \((F 337)\) is exceeded after reaching the automatic light-load high-speed operation frequency \((F 330)\) and after a lapse of the light-load high-speed operation heavy load detection time \((F 334)\).
- ③ If a speed command value less than the light-load high-speed operation switching lower limit frequency \((F 331)\) is entered.

Note: The torque monitor at the light-load high-speed switching (detected value) is updated for every operation.

These values can be monitored by setting the standard monitor parameter \((F 710)\) and status monitor parameters 1 to 8 \((F 711 \text{ to } F 718)\).

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Monitor output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-load high-speed torque monitor 1 (Detection torque monitor at operation switching)</td>
<td>Average torque during light-load high-speed operation load detection time ((F 333)) after a lapse of light-load high-speed operation load detection waiting time ((F 332))</td>
<td>Setting No. 64</td>
</tr>
<tr>
<td>Light-load high-speed torque monitor 2 (Detection torque monitor at constant speed operation)</td>
<td>Average torque after reaching automatic light-load high-speed operation frequency ((F 330)) and after a lapse of light-load high-speed operation heavy load detection time ((F 334))</td>
<td>Setting No. 65</td>
</tr>
</tbody>
</table>
Example of operation

Light-load high-speed operation selection ($F_{328}=3$: High-speed operation set with F_{330}): F (Raising)

Heavy-load torque during constant power running

F_{337}

Speed reach detection band

F_{102}

Light-load high-speed operation

Automatic light-load high-speed operation frequency F_{330}

Load detection time F_{333}

Light-load high-speed operation load detection waiting time F_{332}

Light-load high-speed operation switching lower limit frequency F_{331}

Light-load high-speed operation heavy load detection time F_{334}

Light-load high-speed operation switching lower limit frequency F_{331}

Light-load high-speed operation load detection waiting time F_{332}

Light-load high-speed operation load detection time F_{333}

Light-load high-speed operation heavy load detection time F_{334}

Light-load high-speed operation switching lower limit frequency F_{331}

Light-load high-speed operation load detection waiting time F_{332}

Light-load high-speed operation load detection time F_{333}

Light-load high-speed operation heavy load detection time F_{334}

Light-load high-speed operation

Note: The torque monitor at the light-load high-speed switching (detected value) is updated for every operation.
These values can be monitored by setting the standard monitor parameter (F_{710}) and status monitor parameters 1 to 8 (F_{711} to F_{718}).
5. How to adjust parameters

If the light-load high-speed operation is used, it is necessary to always set the motor-related parameters (Motor constants) regardless of setting of V/f control mode selection (\(P \cdot k\)). Refer to Section 6-22 of VF-AS1 instruction manual (E6581301) to set motor-related parameters. In addition, for the high-speed operation fixed setting mode (\(F \equiv 3, 4\)), the learning action allows the light-load high-speed operation to be adjusted easily.

5.1 Automatic setting mode of high-speed operation speed

\{Adjustment method for lift application\}

If the light-load high-speed operation is carried out with 60Hz of normal operation, follow the procedure below:

1. Set the parameter below at an arbitrary position of the status monitor display selection (\(F \equiv 1 \sim 8\)).

 \[
 \text{Light-load high-speed load torque monitor 1 Setting No.64 Ex. of LED display } L \equiv 20
 \]

2. Carry out the power running operation while hanging a minimum load for which the light-load high-speed operation is not wanted and check that the operation does not change to the light-load high-speed operation (an operation frequency does not change). If changing to the light-load high-speed operation, reduce the setting value of the switching load torque during power running (\(F \equiv 335\)).

3. Similarly, carry out the regenerative braking operation while hanging a minimum load for which the light-load high-speed operation is not wanted and check that the operation does not change to the light-load high-speed operation (an operation frequency does not change). If changing to the light-load high-speed operation, reduce the setting value of the switching load torque during power running (\(F \equiv 338\)).

 Standard setting values of the switching load torque during power running (\(F \equiv 335\)) and the switching load torque during regenerative braking (\(F \equiv 338\)) are 105% of torque monitor values checked on the light-load high-speed load torque monitor 1 when power running/regenerative braking operation is carried out with a maximum load for which the light-load high-speed operation can be carried out.

4. When reaching a state where it is possible to switch to the light-load high-speed operation, check that a high-speed operation frequency changes by changing a load.

5. Restore the parameter changed in ① to an initial value.
5.2 Fixed setting mode of high-speed operation speed

If the light-load high-speed operation is carried out with 60Hz of normal operation, follow the procedure below:

① Set the automatic light-load high-speed operation frequency (F330). Ex.: F330 = 90Hz

② Set the light-load high-speed learning function (F329) to 1 (Forward run learning).

③ Carry out the 60Hz-forward power running operation while hanging a maximum load for which the light-load high-speed operation can be carried out and check that the operation changes to the light-load high-speed operation (90Hz operation). (Forward run learning)

During the learning operation, LED blinks on the left side of the frequency display LED.

④ Set the light-load high-speed learning function (F329) to 2 (Reverse run learning).

⑤ Similarly, carry out the 60Hz-reverse regenerative braking operation while hanging a maximum load for which the light-load high-speed operation can be carried out and check that the operation changes to the light-load high-speed operation (90Hz operation).

⑥ The parameters below are automatically adjusted by carrying out operations in ③ and ⑤.

<table>
<thead>
<tr>
<th>Title</th>
<th>Function</th>
<th>Default setting</th>
<th>Values set by learning function</th>
</tr>
</thead>
<tbody>
<tr>
<td>F335</td>
<td>Switching load torque during power running</td>
<td>50</td>
<td>Light-load high-speed load torque monitor 1 during power running +5%</td>
</tr>
<tr>
<td>F336</td>
<td>Heavy-load torque during power running</td>
<td>100</td>
<td>Light-load high-speed load torque monitor 2 during power running +5%</td>
</tr>
<tr>
<td>F337</td>
<td>Heavy-load torque during constant power running</td>
<td>50</td>
<td>Maximum torque value during acceleration from normal operation speed to high-speed operation (speed reach) during power running +5%</td>
</tr>
<tr>
<td>F338</td>
<td>Switching load torque during regenerative braking</td>
<td>50</td>
<td>Light-load high-speed load torque monitor 1 during regenerative braking +5%</td>
</tr>
</tbody>
</table>

⑦ Hang a load for which the light-load high-speed operation is not wanted and check that a normal operation does not change for both of power running/regenerative braking operations.

《Cautions》

- If a result of the learning operation is as follows, the learning operation should be completed when it stops without transition to the high-speed operation.

Switching load torque during power running (F335) is 70% or more
Switching load torque during regenerative braking (F338) is 70% or more

- If a detected torque exceeds 150% during acceleration of the high-speed operation, the high-speed operation should be stopped and the learning operation should be completed without reflecting the learning data.

- If a detected torque exceeds 100% during constant speed operation after completion of acceleration of the high-speed operation, the high-speed operation should be stopped and the learning operation should be completed without reflecting the learning data.