NOTICE
1. Read this manual before installing or operating. Keep this instruction manual on hand of the end user, and make use of this manual in maintenance and inspection.
2. All information contained in this manual will be changed without notice. Please contact your Toshiba distributor to confirm the latest information.
1. Introduction ... 1
2. How to use PCL001Z ... 3
 2.1. Enabling macros ... 3
 2.2. License agreement .. 4
 2.3. Opening window .. 5
 2.4. Main window ... 6
 2.4.1. Outline of main window .. 6
 2.4.2. Tab menu ... 9
 2.4.3. Logic setting area ... 15
 2.4.3.1. Outline of logic setting area .. 15
 2.4.3.2. How to set of logic .. 17
 2.4.4. Communication menu .. 19
 2.4.4.1. Communication setting window .. 20
 2.4.4.2. Basic parameter view list window ... 21
 2.4.4.3. Other parameter view list window ... 22
 2.5. Real time monitor window ... 24
 2.5.1. Real time monitor ... 24
 2.5.2. Trace sheet ... 26
3. Appendix ... 27
 3.1. Input terminal list .. 27
 3.2. My function-S data list ... 28
 3.3. Command list .. 29
1. Introduction

The My function-S setting tool “PCL001Z” for VF-S15 is the software that performs the following functions when used with an inverter connected to a computer via an RS-485 communications device. Please read this manual carefully along with the instruction manual for VF-S15 before using PCL001Z and use it correctly.

- Exporting and Importing parameters
- Graphical making of logic sequence
- Save and Load of setting parameters
- Real time monitor (You can monitor the terminal state and part of monitor parameter)

*1 PCL001Z does not support any inverters other than VF-S15.
*2 To use PCL001Z, the USB converter unit shown in Fig. 1 below are required.
*3 PCL001Z use the TOSHIBA inverter protocol. Therefore, please set the TOSHIBA protocol (F829 = 0) to the protocol selection of drive.

- USB converter unit (part 〇 in this figure)
- Inverter interconnect cable (part 〇 in this figure)
- Computer interconnect cable (part 〇 in this figure)

<table>
<thead>
<tr>
<th>Model number</th>
<th>Cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB0011</td>
<td>1.2m</td>
</tr>
<tr>
<td>CAB0013</td>
<td>3.6m</td>
</tr>
<tr>
<td>CAB0015</td>
<td>4.8m</td>
</tr>
</tbody>
</table>

Inverter interconnect cable (optional)

USB cable (A-B connection type)
Prepare a commercially available USB cable (USB1.1/2.0-compliant).
Recommended cable length: 1m

Fig. 1 An example of connection of USB converter unit
*4 System requirements (Same as Microsoft® Excel® 2010)
 CPU: 500-megahertz (MHz) processor or higher
 Memory: 512 MB or higher
 HDD: 3.5GB or higher
 Display: 1024 × 768 or higher
 Operating environment: Microsoft® Excel® 2010
 Others: A USB port is required for the computer to connect to the inverter.
 It is recommendable to use a mouse or a similar pointing device for operation.

*5 Connect the optional USB communication converter before starting PCL001Z. Do not plug or unplug the connector when PCL001Z is running.

*6 How to install PCL001Z
 To install PCL001Z, just extract the zip file and move it into the desired folder.
 Take the following precautions when installing PCL001Z.
 • Exit running application programs.
 • When updating latest PCL001Z, uninstall the old version of PCL001Z. (The version of PCL001Z is shown in the Opening window.)

*7 How to uninstall PCL001Z
 To uninstall PCL001Z, just remove the folder containing PCL001Z from the computer.

☆ The specifications of this software is subject to change without notice.
☆ Toshiba Schneider Inverter assumes no responsibility for damage caused directly or indirectly by the use or a malfunction of this software product.
☆ These system requirements are minimum conditions required for the use of PCL001Z. They do not guarantee that all functions of PCL001Z are performed normally.
☆ Windows® is listed as the abbreviation for a Microsoft® Windows® operating system. Microsoft® Windows® and Microsoft® Excel® are registered trademarks or trademarks of the US Microsoft Corporation in the USA and other countries.
☆ The symbols used in this manual have the following meanings.
[]: Buttons or radio buttons in windows of PCL001Z or Microsoft Windows
2. How to use PCL001Z

2.1. Enabling macros

When PCL001Z is started for the first time, the dialog box (shown in Fig. 2.1-1 or 2) may appear. If it appears, click the [Enable Macros] or [Enable Content], because PCL001Z uses macros.

![Security Warning 1](Fig. 2.1-1 Security warning 1)

![Security Warning 2](Fig. 2.1-2 Security warning 2)
2.2. License agreement
When PCL001Z is started for the first time or after macros have been enabled, the PCL001Z license agreement window (Fig. 2.2-1) appears. Read the contents carefully and click [I Agree] if you wish to use PCL001Z. Clicking [I Do Not Agree] closes the Excel book.

![License agreement window](image)

Do you agree to the above mentioned contents?
上記項目に同意して頂けますか？

[I Agree] 同意する
[I Do Not Agree] 同意しない

Fig. 2.2-1 License agreement
2.3. Opening window
When macros are executed, the Opening window (Fig. 2.3) appears.
The main window is shown by clicking [OK].

![Opening window](image)

Fig. 2.3 Opening window
2.4.Main window

2.4.1.Outline of main window

In this window (Fig.2.4-1), you can make the logic with My function-S, Upload/Download of inverter parameters, Save/Open of setting parameters, etc.

![Fig. 2.4-1 Main window](image)

① Tab menu
Icons of Input terminal, Output terminal, My function-S data and Command for set to logic setting area are listed.
Setting of sample and Save/Open of setting are done by this menu.
Please refer to section 2.4.2 for information of tab menu.

② Logic setting area
You can do the graphical making of logics for My function-S by setting icons to this area.
Please refer to section 2.4.3 for information of logic setting area.

③ [Close]
PCL001Z is closed by clicking this button.
The setting of the parameters on PCL001Z is not preserved.
Please save the setting from the tab menu when preservation is necessary.
④ [Default setting]
The initializing command is transmitted to the inverter, and initialization (TYP3) of parameters is executed by clicking this button.

⑤ [Clear All logic setting]
Basic parameters and other parameters on PCL001Z are cleared by clicking this button.

⑥ [Clear Logic block]
Mouse pointer becomes to eraser shape, and becomes to be able to delete logic as Fig. 2.4-1 by clicking this button. Mouse pointer becomes to normal shape, and release the delete mode as shown in Fig. 2.4-2 by one more click the this button or click the icon of tab menu.

⑦ [Monitor]
Real time monitor window is shown by clicking this button. Please refer to section 2.5 for information of real time monitor window.
Command mode selection (CMOd)
You can choose command mode selection.
This setting is reflected to the inverter parameter when downloading all the parameters to
the inverter by used [Download All parameters PC -> Drive].
Also, inverter parameter setting is reflected to this setting when uploading all the
parameters from the inverter by used [Uploading All parameters PC <- Drive].

My function-S selection (A977)
You can choose My function-S selection.
This setting is reflected to inverter parameter when downloading all the parameters to the
inverter by used [Download All parameters PC -> Drive].
Also, inverter parameter setting is reflected to this setting when uploading from the inverter
by used [Uploading All parameters PC <- Drive].

Communication menu
Settings of communication and Upload/Download of settings are done in this menu.
Please refer to section 2.4.4 for information of communication menu.

[EMERGENCY STOP]
The emergency stop command is transmitted to the inverter, and emergency stop trip is
occurred by clicking this button.
Please use this function, when it is difficult to stop the inverter by the terminal input due to
getting into the loop logic.
2.4.2 Tab menu
Menu is changed by clicking tab on upper tab menu. In this section, inform the each menu.

1. Input terminal menu
Menu of Fig. 2.4-3 is shown by clicking “Input terminal” tab.
Selecting of input terminal for making logic can be done in this menu.
Please refer to section 2.4.3 for information of logic making.

![Input terminal menu](image)

Input terminal setting window of Fig. 2.4-4 is shown by clicking [Input terminal function select].
The settings of input terminal function (F104, F108 to F118) can be done in this menu.
If you use inversion, please check the “Reverse signal” check box on the right of applied terminal setting.

![Input terminal setting window](image)
2. Output terminal / Monitor menu

Menu of Fig. 2.4-5 is shown by clicking “Output terminal / Monitor” tab.
Selecting of an output terminal and monitor data for making logic can be done in this menu.

Output terminal setting window of Fig. 2.4-6 is shown by clicking [Output terminal function select].
The settings of output terminal function (F130 to F139) can be done in this menu.
If you use inversion, please check the “Reverse signal” check box on the right of applied terminal setting.
3. My function-S data menu

Menu of Fig. 2.4-7 is shown by clicking "My function-S data" tab. Selecting of My function-S data for making logic can be done in this menu.

![Fig. 2.4-7 My function-S data menu](image)

Logic data setting window of Fig. 2.4-8 is shown by clicking [My function-S function setting]. The settings of input terminal function (A918 to A934) can be done in this menu. If you use inversion, please check the “Reverse signal” check box on the right of applied terminal setting.

![Fig. 2.4-8 Logic data setting menu](image)
4. Command menu

Menu of Fig. 2.4-9 is shown by clicking "Command" tab. Selecting of commands for making logic can be done in this menu.

![Command menu]

Fig. 2.4-9 Command menu

5. Sample list menu

Menu of Fig. 2.4-10 is shown by clicking "Sample list" tab. Setting of some samples can be done in this menu.

![Sample list menu]

Fig. 2.4-10 Sample list menu

Sample windows are shown by clicking each button.
This section explains based on the basic logic sample window. (Fig. 2.4-11)
You can choose any sample from five samples, and set. The figure of sample logic and short information are shown by clicking any tab.
After clicking the [SET], logic sample is set to logic setting area by selecting the “Yes(Y)” in notice window for set the sample. (Fig. 2.4-12)
In this function, please note that all basic parameters and other parameters are overwritten.

![Fig. 2.4-11 Basic sample logic window](image1)

![Fig. 2.4-12 Notice window for set the sample](image2)
6. Save / Open menu

Menu of Fig. 2.4-13 is shown by clicking "Save / Open" tab.

Save/Open of basic parameters and other parameters and making of new logic are done in this menu.

When the parameter registered in other parameters overlaps with the basic parameter of basic parameters view list, the parameter is not preserved as other parameters.

![Fig. 2.4-13 Save / Open menu](image)

① [New logic]
Create a new logic by clicking this button.

② [Open]
Load the stored settings by clicking this button.

③ [Save]
Save the current settings to file by clicking this button.

File name is created automatically according to the date and time (Extension is "*.pcl"). File name can be changed.
2.4.3. Logic setting area

2.4.3.1. Outline of logic setting area

You can do the graphical making of logics for My function-S by set icons to logic setting area. (Fig. 2.4-14)

Each logics of No.1 to No.7 are pairing with inverter parameters as Table1 in next page.

① Input function target 1
② Input function command 2
③ Input function target 2
④ Input function command 3
⑤ Input function target 3
⑥ Output function assigned object

Fig. 2.4-14 Logic setting area

- Input function target 1 to 3
This area can be set the input function. Input terminal, output terminal, monitor data and My function-S data can be set.

- Input function command 2 to 3
This area can be set the command for input function.
You can use logical calculation, timer, counter and set etc.

- Output function assigned object
This area can be set that where is output result of the input function target and input function command. Input terminal and My function-S data can be set.
<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Logic function target 1</th>
<th>Input function command 1</th>
<th>Input function target 2</th>
<th>Input function command 2</th>
<th>Input function target 3</th>
<th>Input function command 3</th>
<th>Output function assigned object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit No. 1</td>
<td>A900</td>
<td>A901</td>
<td>A902</td>
<td>A903</td>
<td>A904</td>
<td>A905</td>
<td>Output function assigned object 1</td>
</tr>
<tr>
<td>Unit No. 2</td>
<td>A906</td>
<td>A907</td>
<td>A908</td>
<td>A909</td>
<td>A910</td>
<td>A911</td>
<td>Output function assigned object 2</td>
</tr>
<tr>
<td>Unit No. 3</td>
<td>A912</td>
<td>A913</td>
<td>A914</td>
<td>A915</td>
<td>A916</td>
<td>A917</td>
<td>Output function assigned object 3</td>
</tr>
<tr>
<td>Unit No. 4</td>
<td>A918</td>
<td>A919</td>
<td>A920</td>
<td>A921</td>
<td>A922</td>
<td>A923</td>
<td>Output function assigned object 4</td>
</tr>
<tr>
<td>Unit No. 5</td>
<td>A924</td>
<td>A925</td>
<td>A926</td>
<td>A927</td>
<td>A928</td>
<td>A929</td>
<td>Output function assigned object 5</td>
</tr>
<tr>
<td>Unit No. 6</td>
<td>A929</td>
<td>A930</td>
<td>A931</td>
<td>A932</td>
<td>A933</td>
<td>A934</td>
<td>Output function assigned object 6</td>
</tr>
<tr>
<td>Unit No. 7</td>
<td>A935</td>
<td>A936</td>
<td>A937</td>
<td>A938</td>
<td>A939</td>
<td>A940</td>
<td>Output function assigned object 7</td>
</tr>
</tbody>
</table>
2.4.3.2. How to set logic

The functions for set to logic setting area can be chosen on tab menu. (2.4.2)
Regarding the input terminal selection, the function can be selected by clicking the icon as shown Fig. 2.4-15.

![Fig. 2.4-15 Selection of use function](image)

You can discern the settable logic setting area by color of panel on the right side of tab menu. Regarding input terminal, they can set to both input function target and output function target because the color panels show yellow and green. (Fig. 2.4-15 and Fig. 2.4-16)

![Fig. 2.4-16 Logic setting slot](image)

When clicking a logic setting slot after selecting a function you need, the icon is displayed on the logic setting slot, and the logic function is set.
The icon is changed according to the setting slot. Regarding the Terminal F, the icon is shown as “terminal” on the input function target. On the output function target, the icon is changed and shown as “coil”. (Fig. 2.4-17)

![Fig. 2.4-17 Setting of terminal F](image)
When selecting an output terminal or a monitor function, the function can be selected in the pull down menu as shown in Fig. 2.4-18.

After that, please click the logic setting slot that you need to set the function. (Fig. 2.4-19)

My function-S output 1 to 16 of output terminal functions can be set to the logic setting slot. The icon is changed according to the setting slot. (Fig. 2.4-20)
2.4.4. Communication menu

Settings of communication and Upload/Download of setting values can be done in this menu. (Fig. 2.4-21)

And, the Basic parameter viewer window and the Set other parameters window can be opened.

Fig. 2.4-21 Communication menu

① [Communication setup]
Communication setting window (refer to section 2.4.4.1.) is shown by clicking this button.

② [Basic parameter viewer]
Basic parameters view list window (refer to section 2.4.4.2.) is shown by clicking this button.

③ [Set other parameters]
Other parameters view list window (refer to section 2.4.4.3.) is shown by clicking this button.

④ [Upload All parameters PC <- Drive]
Setting values of all parameters on the basic parameter viewer and on the other parameter viewer can be read from the inverter by clicking this button. At that time, please note that all basic parameters and other parameters of PCL001Z are overwritten.

⑤ [Download All parameters -> Drive]
Setting values of all parameters on the basic parameter viewer and on the other parameter viewer can be written to the inverter by clicking this button. At that time, please note that all parameters of PCL001Z are written to the inverter.
2.4.4.1. Communication setting window

In this window, settings of a port number, baud rate, parity and time out can be done as shown in Fig. 2.4-22. Please set the communication port of PC to correspond with the parameter settings of the inverter in order to communicate normally.

Default setting of inverter as following.
- Baud rate (F_{800}): 19200bps
- Parity(F_{801}): EVEN

Please confirm the communication port number from the device manager of Windows if you do not know the communication port number of using PC.

According to the example of Fig. 2.4-23, ‘3’ should be set to the pull down menu of port number because the COM port of USB001Z Serial Port is COM3.

![Communication setting window](image1)

![Confirmation of COM port from the device manager](image2)
2.4.4.2. Basic parameter view list window

The list of basic parameters is shown in this window (Fig. 2.4-24). With regard to the setting values that are different from the factory defaults, the “Changed” is displayed at the right side of the tables.

The basic parameters of PCL001Z are as follows.

<table>
<thead>
<tr>
<th>Parameter title</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command mode selection</td>
<td>C M O D</td>
</tr>
<tr>
<td>Terminal settings</td>
<td>F 104, F 108 to F 139</td>
</tr>
<tr>
<td>My function-S settings</td>
<td>A 900~A 977</td>
</tr>
</tbody>
</table>

![Fig. 2.4-24 Basic parameter view list window](image)

1. [Upload All parameters PC <- Drive]

 Setting values of all parameters on the basic parameter viewer and the other parameter viewer are read from the inverter by clicking this button. At that time, please note that all basic parameter and other parameter of PCL001Z are overwritten.

2. ['Changed' only]

 Only the parameters different from the factory default are displayed in the list as Fig. 2.4-25 by clicking this button.

![Fig. 2.4-25 Only 'Changed' parameters are shown](image)
2.4.4.3. Other parameter view list window

In this window, a setting value of parameters with communication number from "0000" to "0984" can be individually read and written as shown in Fig. 2.4-26.

Reading and writing of all parameters on log are done when operate the upload all parameters or the download all parameters in communication menu.

All parameters on the log are also read and written when using a button ([Upload All parameters PC <- Drive] or [Download All parameters PC -> Drive]) in the Communication menu or a [Upload All parameters PC <- Drive] button in the Basic parameters view list.

![Other parameter view list window](image)

Fig. 2.4-26 Other parameter view list window

① [Upload PC <- Drive]
After setting a communication number, the setting value of parameter can be read by clicking this button. The read setting value remains in the log.

② [Download PC -> Drive]
After setting a communication number and setting value, the parameter setting value can be written to the inverter by clicking this button. The written setting value remains in the log.

③ [Delete]
The selected log (reversed display) can be deleted. In the example of 2.4-26, the log of communication number "0808" is deleted.

The parameter read and written once is recorded in the log.
The listed parameters in the log can be copied to the setting form by double-clicking the any log.
Please note that the unit system of PCL001Z and the unit system of inverter are different when you set the parameter from the other parameter view list window. For example,

When setting the 10.0 seconds to the acceleration time (α), inputting the following values is necessary to the setting form because the minimum unit from the communication is 0.1.

$$10.0 \text{ (sec)} / 0.1 \text{ (minimum unit)} = 100 \text{ (set value)}$$

And then, because the communication number of α is “0009”, please set the value and communication number as shown in Fig.2.4-27.

Please refer to “TOSVERT VF-S15 Instruction manual <Detailed manual>: E6581610” for communication numbers and minimum units with communication of each inverter parameters.
2.5. Real time monitor window

2.5.1. Real time monitor

ON/OFF state of each terminal, count number of COUNT1/COUNT2 and each monitor items can be monitored in real time by this window. (Fig. 2.5-1)

![Real time monitor window](image)

Fig. 2.5-1 Real time monitor window

① [Start]
Start the monitoring by clicking this button.

② [Stop]
Stop the monitoring by clicking this button.

③ [Trace]
The trace sheet is shown by clicking this button.
State of input terminal and each monitor are shown on the trace sheet in real time.

④ Real time monitor menu
You can choose monitoring items in this menu. Refer to the Table2 on the following page.
Table 2. Real time monitor selection items

<table>
<thead>
<tr>
<th>Communication number</th>
<th>Monitoring items</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD00</td>
<td>Output frequency</td>
<td>(Hz)</td>
</tr>
<tr>
<td>FD03</td>
<td>Output current</td>
<td>(%)</td>
</tr>
<tr>
<td>FD02</td>
<td>Frequency reference</td>
<td>(Hz)</td>
</tr>
<tr>
<td>FD04</td>
<td>Input Voltage (DC detection)</td>
<td>(%)</td>
</tr>
<tr>
<td>FD05</td>
<td>Output Voltage (command value)</td>
<td>(%)</td>
</tr>
<tr>
<td>FD29</td>
<td>Input power</td>
<td>(kW)</td>
</tr>
<tr>
<td>FD30</td>
<td>Output power</td>
<td>(kW)</td>
</tr>
<tr>
<td>FD18</td>
<td>Torque</td>
<td>(%)</td>
</tr>
<tr>
<td>FD23</td>
<td>Motor cumulative load factor</td>
<td>(%)</td>
</tr>
<tr>
<td>FD24</td>
<td>Inverter cumulative load factor</td>
<td>(%)</td>
</tr>
<tr>
<td>FD25</td>
<td>Braking resistance cumulative load factor</td>
<td>(%)</td>
</tr>
<tr>
<td>FD15</td>
<td>Frequency setting value (after compensation)</td>
<td>(Hz)</td>
</tr>
<tr>
<td>FE35</td>
<td>VIA input value</td>
<td>(%)</td>
</tr>
<tr>
<td>FE36</td>
<td>VIB input value</td>
<td>(%)</td>
</tr>
<tr>
<td>FE37</td>
<td>VIC input value</td>
<td>(%)</td>
</tr>
<tr>
<td>FD22</td>
<td>PID feedback value</td>
<td>(Hz)</td>
</tr>
<tr>
<td>FE76</td>
<td>Integral input power</td>
<td>(1kWh × 10^{746})</td>
</tr>
<tr>
<td>FE77</td>
<td>Integral output power</td>
<td>(1kWh × 10^{746})</td>
</tr>
</tbody>
</table>
2.5.2. Trace sheet

In this sheet, input / output terminals and values of each monitoring items can be displayed graphically as shown in Fig.2.5-2.

Please select the monitoring items beforehand in the Real time monitor window, and call the tracing sheet by the [Trace].

![Tracing data by 'My function-S setting tool'](image)

Fig. 2.5-2 Tracing sheet

1. **[Start]**
 Start the tracing by clicking this button.

2. **[Stop]**
 Stop the tracing by clicking this button.

3. **[Return MONITOR window]**
 Real time monitor window is shown by clicking this button.
3. Appendix

3.1. Input terminal list

Input terminal icons on PCL001Z and setting values of logic are listed in Table 3.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Icon</th>
<th>Output function assigned object</th>
<th>Setting value of logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal F</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>Terminal R</td>
<td>R</td>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>Terminal RES</td>
<td>RES</td>
<td>RES</td>
<td>3</td>
</tr>
<tr>
<td>Terminal S1</td>
<td>S1</td>
<td>S1</td>
<td>4</td>
</tr>
<tr>
<td>Terminal S2</td>
<td>S2</td>
<td>S2</td>
<td>5</td>
</tr>
<tr>
<td>Terminal S3</td>
<td>S3</td>
<td>S3</td>
<td>6</td>
</tr>
<tr>
<td>Terminal VIB</td>
<td>VIB</td>
<td>VIB</td>
<td>7</td>
</tr>
<tr>
<td>Terminal VIA</td>
<td>VIA</td>
<td>VIA</td>
<td>8</td>
</tr>
<tr>
<td>Virtual input terminal 1</td>
<td>VT1</td>
<td>VT1</td>
<td>21</td>
</tr>
<tr>
<td>Virtual input terminal 2</td>
<td>VT2</td>
<td>VT2</td>
<td>22</td>
</tr>
<tr>
<td>Virtual input terminal 3</td>
<td>VT3</td>
<td>VT3</td>
<td>23</td>
</tr>
<tr>
<td>Virtual input terminal 4</td>
<td>VT4</td>
<td>VT4</td>
<td>24</td>
</tr>
<tr>
<td>Internal terminal 1</td>
<td>IT1</td>
<td>IT1</td>
<td>25</td>
</tr>
<tr>
<td>Internal terminal 2</td>
<td>IT2</td>
<td>IT2</td>
<td>26</td>
</tr>
<tr>
<td>Internal terminal 3</td>
<td>IT3</td>
<td>IT3</td>
<td>27</td>
</tr>
<tr>
<td>Internal terminal 4</td>
<td>IT4</td>
<td>IT4</td>
<td>28</td>
</tr>
<tr>
<td>Internal terminal 5</td>
<td>IT5</td>
<td>IT5</td>
<td>29</td>
</tr>
<tr>
<td>Internal terminal 6</td>
<td>IT6</td>
<td>IT6</td>
<td>30</td>
</tr>
<tr>
<td>Internal terminal 7</td>
<td>IT7</td>
<td>IT7</td>
<td>31</td>
</tr>
<tr>
<td>Internal terminal 8</td>
<td>IT8</td>
<td>IT8</td>
<td>32</td>
</tr>
</tbody>
</table>
My function-S data icons on PCL001Z and setting values of logic are listed in Table 4.

<table>
<thead>
<tr>
<th>Data</th>
<th>Icon</th>
<th>Setting value of logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output percent data 1</td>
<td>Output % 1</td>
<td>918</td>
</tr>
<tr>
<td>Output percent data 2</td>
<td>Output % 2</td>
<td>919</td>
</tr>
<tr>
<td>Output percent data 3</td>
<td>Output % 3</td>
<td>920</td>
</tr>
<tr>
<td>Output percent data 4</td>
<td>Output % 4</td>
<td>921</td>
</tr>
<tr>
<td>Output percent data 5</td>
<td>Output % 5</td>
<td>922</td>
</tr>
<tr>
<td>Output frequency data 1</td>
<td>Output Hz 1</td>
<td>923</td>
</tr>
<tr>
<td>Output frequency data 2</td>
<td>Output Hz 2</td>
<td>924</td>
</tr>
<tr>
<td>Output frequency data 3</td>
<td>Output Hz 3</td>
<td>925</td>
</tr>
<tr>
<td>Output frequency data 4</td>
<td>Output Hz 4</td>
<td>926</td>
</tr>
<tr>
<td>Output frequency data 5</td>
<td>Output Hz 5</td>
<td>927</td>
</tr>
<tr>
<td>Output time data 1</td>
<td>Output Sec 1</td>
<td>928</td>
</tr>
<tr>
<td>Output time data 2</td>
<td>Output Sec 2</td>
<td>929</td>
</tr>
<tr>
<td>Output time data 3</td>
<td>Output Sec 3</td>
<td>930</td>
</tr>
<tr>
<td>Output time data 4</td>
<td>Output Sec 4</td>
<td>931</td>
</tr>
<tr>
<td>Output time data 5</td>
<td>Output Sec 5</td>
<td>932</td>
</tr>
<tr>
<td>Number of times of output data 1</td>
<td>Output Num 1</td>
<td>933</td>
</tr>
<tr>
<td>Number of times of output data 2</td>
<td>Output Num 2</td>
<td>934</td>
</tr>
</tbody>
</table>
3.3. Command list

Command icons on PCL001Z and setting values of logic are listed in Table 5.

<table>
<thead>
<tr>
<th>Command</th>
<th>Icon</th>
<th>Setting value of logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer</td>
<td>ST</td>
<td>1</td>
</tr>
<tr>
<td>Transfer (inversion)</td>
<td>STN</td>
<td>2</td>
</tr>
<tr>
<td>Logical product (A and B)</td>
<td>AND</td>
<td>3</td>
</tr>
<tr>
<td>Logical product (inversion of right side) (A and NB)</td>
<td>ANDN</td>
<td>4</td>
</tr>
<tr>
<td>Logical sum (A or B)</td>
<td>OR</td>
<td>5</td>
</tr>
<tr>
<td>Logical sum (inversion of right side) (A or NB)</td>
<td>ORN</td>
<td>6</td>
</tr>
<tr>
<td>Comparison of data for matching</td>
<td>EQ</td>
<td>7</td>
</tr>
<tr>
<td>Comparison of data for mismatch</td>
<td>NE</td>
<td>8</td>
</tr>
<tr>
<td>Comparison of sizes (A > B)</td>
<td>GT</td>
<td>9</td>
</tr>
<tr>
<td>Comparison of sizes (A => B)</td>
<td>GE</td>
<td>10</td>
</tr>
<tr>
<td>Comparison of sizes (A < B)</td>
<td>LT</td>
<td>11</td>
</tr>
<tr>
<td>Comparison of sizes (A =< B)</td>
<td>LE</td>
<td>12</td>
</tr>
<tr>
<td>Absolute value of difference</td>
<td>ASUB</td>
<td>13</td>
</tr>
<tr>
<td>ON delay</td>
<td>ON</td>
<td>14</td>
</tr>
<tr>
<td>OFF delay</td>
<td>OFF</td>
<td>15</td>
</tr>
<tr>
<td>Counter</td>
<td>CNT1</td>
<td>16</td>
</tr>
<tr>
<td>Counter</td>
<td>CNT2</td>
<td>17</td>
</tr>
<tr>
<td>Peak hold</td>
<td>HOLD</td>
<td>18</td>
</tr>
<tr>
<td>Set</td>
<td>SET</td>
<td>19</td>
</tr>
<tr>
<td>Reset</td>
<td>RST</td>
<td>20</td>
</tr>
<tr>
<td>Clear</td>
<td>CLR</td>
<td>21</td>
</tr>
<tr>
<td>Clear (Inversion)</td>
<td>CLRN</td>
<td>22</td>
</tr>
<tr>
<td>ON delay 2</td>
<td>ON2</td>
<td>23</td>
</tr>
<tr>
<td>OFF delay 2</td>
<td>OFF2</td>
<td>24</td>
</tr>
</tbody>
</table>